This chapter focus on carbohydrate anabolism, which use chemical energy in the form of ATP and NADH or NADPH to synthesize cellular components from simple precursor molecules. Anabolic pathways are generally reductive rather than oxidative. Catabolism and anabolism proceed simultaneously in a dynamic steady state, so the energy-yielding degradation of cellular components is counterbalanced by biosynthetic processes, which create and maintain the intricate orderliness of living cells. Plants are especially versatile in handling carbohydrates, for several reasons.

First, plants are autotrophs, able to convert inorganic carbon (as CO2) into organic compounds.

Second, biosynthesis occurs primarily in plastids, membrane-bounded organelles unique to plants, and the movement of intermediates between cellular compartments is an important aspect of metabolism.

Third, plants are not motile: they cannot move to find better supplies of water, sunlight, or nutrients. They must have sufficient metabolic flexibility to allow them to adapt to changing conditions in the place where they are rooted. Finally, plants have thick cell walls made of carbohydrate polymers, which must be assembled outside the plasma membrane and which constitute a significant proportion of the cell’s carbohydrate.

The chapter begins with a description of the process by which CO2 is assimilated into trioses and hexoses, then considers photorespiration, an important side reaction during CO2 fixation, and the ways in which certain plants avoid this side reaction. We then look at how the biosynthesis of sucrose (for sugar transport) and starch (for energy storage) is accomplished by mechanisms analogous to those employed by animal cells to make glycogen. The next topic is the synthesis of the cellulose of plant cell walls and the peptidoglycan of bacterial cell walls, illustrating the problems of energydependent biosynthesis outside the plasma membrane. Finally, we discuss how the various pathways that share pools of common intermediates are segregated within organelles yet integrated with one another.

We specialize in Carbohydrates Synthesis with the highest technology and stable quality control , our factory has sophisticated technology production route to produce this product ,welcome to inquiry it .please contact us by e-mail sales@songhaichem.com for quotation requests, please provide quantity, purity, and any other specific requirements.

Carbohydrates SynthesisNews
This chapter focus on carbohydrate anabolism, which use chemical energy in the form of ATP and NADH or NADPH to synthesize cellular components from simple precursor molecules. Anabolic pathways are generally reductive rather than oxidative. Catabolism and anabolism proceed simultaneously in a dynamic steady state, so the energy-yielding degradation...